Highfield Community Primary School

Calculations Policy

Academic Year
2021-2022

Progression in Calculations - BEV Maths Leads

Addition

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole: partwhole model	Use cubes to add two numbers together as a group or in a bar.		$\begin{aligned} & 4+3=7 \\ & 10=6+4 \\ & \begin{array}{l} \text { Use the part-part } \\ \text { whole diagram } \\ \text { as shown above } \\ \text { to move into the } \\ \text { abstract. } \end{array} \end{aligned}$
Starting at the bigger number and counting on	Start with the larger number on the bead string and then count on to the smaller number 1 by 1 to find the answer.	$12+5=17$ Start at the larger number on the number line and count on in ones or in one jump to find the answer.	$5+12=17$ Place the larger number in your head and count on the smaller number to find your answer.

Regrouping to make 10	$6+5=11$ Start with the bigger number and use the smaller number to make 10.	Use pictures or a number line. Regroup or partition the smaller number to make 10. $9+5=14$ 14	$7+4=11$ If I am at seven, how many more do I need to make 10. How many more do I add on now?
Adding three single digits	$4+7+6=17$ Put 4 and 6 together to make 10 . Add on 7. Following on from making 10, make 10 with 2 of the digits (if possible) then add on the third diait.	$\theta^{2} \theta^{2}+\operatorname{Di\theta }_{\theta}^{\infty} \theta_{0}^{2} \theta^{2}+\operatorname{D}_{\infty}^{\infty} \theta^{2}$ Add together three groups of objects. Draw a picture to recombine the groups to make 10.	$\begin{aligned} 4^{4}+7+6 & =10+7 \\ & =17 \end{aligned}$ Combine the two numbers that make 10 and then add on the remainder.

\begin{tabular}{|c|c|c|c|}
\hline Objective and \& Concrete \& Pictorial \& Abstract

\hline Taking away ones \& Use physical objects, counters, cubes etc to show how objects can be taken away.

$$
6-2=4
$$ \& Cross out drawn objects to show what has been taken away.

$$
15-3=
$$

\square \& $$
\begin{aligned}
& 18-3=15 \\
& 8-2=6
\end{aligned}
$$

\hline Counting back \& | Make the larger number in your subtraction. Move the beads along your bead string as you count backwar |
| :--- |
| Use counters and move them away from the group as you take them away counting backwards as you go. | \& | Count back on a number line or number track |
| :--- |
| Start at the bigger number and count back the smaller number showing the jumps on the number line. |
| This can progress all the way to counting back using two 2 digit numbers. | \& Put 13 in your head number are you at? Use your fingers to help.

\hline
\end{tabular}

Find the difference	Compare amounts and objects to find the difference.	Count on to find the difference. Draw bars to find the difference between 2 numbers. Comparison Bar Models Lisa is 13 years old. Her sister is 22 years old Find the difference in age between them.	Hannah has 23 sandwiches, Helen has 15 sandwiches. Find the difference between the number of sandwiches.
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part?	Use a pictorial representation of objects to show the part part whole model.	Move to using numbers within the part whole model.

Column method with regrouping	Use Base 10 to start with before moving on to place value counters. Start with one exchange before moving onto subtractions with 2 exchanges. Make the larger number with the place value counters Start with the ones, can I take away 8 from 4 easily? I need to exchange one of my tens for ten ones.	 When confident, children can find their own way to record the exchange/regrouping. Just writing the numbers as shown here shows that the child understands the method and knows when to exchange/regroup.	Children can start their formal written method by partitioning the number into clear place value columns. Moving forward the children use a more compact method.

	Now I can subtract my ones. Now look at the tens, can I take away 8 tens easily? I need to exchange one hundred for ten tens. Now I can take away eight tens and complete my subtraction Show children how the concrete method links to the written method alongside your working. Cross out the numbers when exchanging and show where we write our new		This will lead to an understanding of subtracting any number including decimals. $\begin{array}{rrrrr} & \begin{array}{c} 5 \\ \end{array} & 12 & & 1 \\ 2 & 6 & 3 & & 0 \\ & 2 & 6 & & 5 \\ \hline 2 & 3 & 6 & . & 5 \end{array}$

Multiplication

| Objective
 and | Concrete | Pictorial | Abstract |
| :--- | :--- | :--- | :--- | :--- |
| Doubling | | | |
| Use practical activities to show how | | | |
| double a number. | | | | Draw pictures to show how to double a number.

Repeated addition		$5+5+5=15$	Write addition sentences to describe objects and pictures.
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw arrays in different rotations to find commutative multiplication sentences. Link arrays to area of rectangles.	Use an array to write multiplication sentences and reinforce repeated addition. $\begin{aligned} & 5+5+5=15 \\ & 3+3+3+3+3=15 \\ & 5 \times 3=15 \\ & 3 \times 5=15 \end{aligned}$

Grid Method
Show the link with arrays to first introduce the grid method.

Move on to using Base 10 to move towards a more compact method.

Move on to place value counters to show how we are finding groups of a number. We are multiplying by 4 so we need 4 rows.

Fill each row with 126.

Add up each column, starting with the ones making any exchanges needed.

Children can represent the work they have done with place value counters in a way that they understand.

They can draw the counters, using colours to show different amounts or just use circles in the different columns to show their thinking as shown below.

Start with multiplying
by one digit numbers and showing the clear addition alongside the grid.

\times	30	5
7	210	35

$\mathbf{2 1 0 + 3 5}=\mathbf{2 4 5}$

Moving forward, multiply by a 2 digit number showing the different rows within the grid method.

Column multiplication	Children can continue to be supported by place value counters at the stage of multiplication. It is important at this stage that they always multiply the ones first and note down their answer followed by the tens which the note below.	Bar modelling and number lines can support learners when solving problems with multiplication alongside the formal written methods.	Start with long multiplication, reminding the children about lining up their numbers clearly in columns. If it helps, children can write out what they are solving next to their answer. This moves to the more compact method. $\begin{array}{r} 1342 \\ \times \quad 18 \\ \hline 13420 \\ 10736 \\ \hline 24156 \end{array}$

Division

\begin{tabular}{|c|c|c|c|}
\hline Objective and Strategies \& Concrete \& Pictorial \& Abstract

\hline Sharing objects into groups \& \& Children use pictures or shapes to share
quantities. \& Share 9 buns between three people.
$$
9 \div 3=3
$$

\hline Division as grouping \& \begin{tabular}{l}
Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding.

$96 \div 3=32$

®®

 \&

Use a number line to show jumps in groups. The number of jumps equals the number of groups.

Think of the bar as a whole. Split it into the number of groups you are dividing by and work out how many would be within each group.

 \&

$$
28 \div 7=4
$$

Divide 28 into 7 groups. How many are in each group?
\end{tabular}

\hline
\end{tabular}

| Division |
| :--- | :--- | :--- | :--- |
| within arrays |

Calculations Policy - Blacon Education Village

